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Abstract

This paper presents a survey of the estimation methods available to measure
discrimination in the labour market. We review the most widespread methodology
that the profession uses in order to evaluate discrimination. Discrimination may
occur at three main stages in the labour market: hiring, wage setting and promo-
tion. Most empirical studies deal with the two first discrimination types. In a first
section, we will present the evaluation in hiring discrimination and, in a second
section, the evaluation of wage discrimination.
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Introduction

Following Heckman (1998), a situation of discrimination against a group is said to arise
if an otherwise identical person is treated differently by virtue of that person’s group
membership, and this group membership by himself has no direct effect on produc-
tivity. One important point is that “discrimination is a causal effect defined by a hy-
pothetical ceteris paribus conceptual experiment”. In other words, discrimination is
defined as an injustice. It should not be confused with inequality, even though the two
notions are related. The early theoretical analysis of the economics of discrimination
dates back to Becker (Becker (1957)). The scope of this chapter is more modest. We will
simply review the most widespread methodology that the profession uses in order to
evaluate discrimination. Discrimination may occur at three main stages in the labour
market: hiring, wage setting and promotion. Most empirical studies deal with the two
first discrimination types. In a first section, we will present the evaluation in hiring
discrimination and, in a second section, the evaluation of wage discrimination.

1 The evaluation of hiring discrimination

Hiring discrimination has considerably attracted attention in Europe since the begin-
ing of the 2000’s. Baert (2017) surveys 90 studies conducted in Europe alone between
2005 and 2017, and this number is increasing steadily.1 Several surveys are available,
for Europe and other countries, including Bertrand and Duflo (2017), Neumark (2018)
and Rich (2014). In this section, we will present the main tools that have been used in
this literature.

The measurement of hiring discrimination needs the collection of specific data
sets. Standard data bases do not allow for measuring hiring discrimination in a sat-
isfactory manner because of the following problems. First, firm-level data sets in-
clude information about the workers that have been hired only. There is no informa-
tion about the workers whose application has been rejected. Second, there is a self-
selection problem. Workers that feel discriminated will tend not to apply to the jobs
for which they think they have no chance to be recruited. Third, the opinion of the
workers about whether they have been discriminated or not cannot be fully trusted
because they generally have no information about their competitors for the job, and
they are both judge and jury. Fourth, the information from the recruiters cannot be
fully trusted for the same reason, and because discrimination is illegal and they have
no incentive to reveal it. Last, two applications are never identical, so that we cannot
know for sure whether a candidate was rejected for discrimination or for an objective,
non observable, difference in the resume.

In order to answer these five critics, the researchers perform correspondence tests.
A correspondence test is an ground experiment. The researcher replies to the ads in-
stead of real candidates. If we wish to test gender discrimination, we should send two
resumes, one for each gender, with comparable productive characteristics. This fixes
the five previous problems: first, the data is not limited to the candidates that have
been successful but also includes all the applicants that failed to reach an interview.
Second, there is no self-selection because the applications are sent by the researcher.
Third, we observe an objective answer from the firm, not an opinion from the candi-
date. Fourth, we observe the true behaviour of the recruiter. Fifth, the applications
have been designed to be equivalent.

1There have been additional studies in Europe, but all of them have not been published in English.
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In a correspondence test, we do not send candidates to the interview in order to
avoid personality biases (Riach and Rich, 2002). When called, the candidate replies
that s-he has already found a job. This is the “callback” variable. Here, it is possible
to examine in which order the candidates are called. Some workers may be called in
priority, but other workers may still be called when the preferred workers are not avail-
able.

Several problems have to be fixed. The candidates must be credible, a sufficient
number of observations may be collected and some validity test may be provided.
Once the data are collected, an adapted statistical analysis should be performed. Ex-
perimental data have specificities that should be accounted for. Among them, the re-
searcher sets the values of the candidates’ variables .

We will first recall the simplest tests, then we will show how they can be related to
least squares method. Last, we present more advanced methods which can be used
to reveal the presence of discriminatory components inside the callback rates. The
main point for all theses method is that the answers to all the candidates on a same job
add are correlated because the recruiter replies to all of them at the same time. This
affects the way to compute the standard errors. We indicate how the statistics should
be adapted.

1.1 The correspondence test

Several fake candidates are sent in answer to a job advertisement. The data is collected
daily until the end of the experiment, which lasts several months in general. Many
precaution must be taken in order to avoid detection. Among them:

• time consistency: the diplomas and the information about tenure must be con-
sistent with the age of the candidates;

• the resumes must be similar but not identical, and examined by a professional
associated with the correspondence test;

• the postal addresses must exhibit similar transportation times and neighbour-
hood reputation;

• other causes of discrimination must be avoided. If we test the existence of gen-
der discrimination, we should send candidates from the same origin in order to
avoid that origin discrimination weakens the identification of gender discrimi-
nation;

• resume templates may be rotated among the candidates;

• no photo should be used, since it can influence the answer (Rich, 2018);

• letters must be posted from different post offices;

• emails should be sent from different or undetectable servers;

• each application is followed by one person only;

• the testers must be tested;

• the confidentiality must be complete until all the data are collected.
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1.2 Comparisons of proportions

Let us consider the two-candidate test. We have performed a correspondence test and
have collected data about the callback of two candidates denoted j ∈ J = {A,B}. For
each job ad, we have two answers from the recruiter. The candidates can receive two
answers only:2 yes (coded 1) or no (coded 0). We summarize the situation in Table 1:

Table 1: Correspondence test

PPPPPPPPj = A
j = B

yes (1) no (0)

yes (1) p(1,1), equal treatment p(1,0), B discriminated
no (0) p(0,1), A discriminated p(0,0), equal treatment

where p(dA ,dB ) is the proportion of answer for which candidate A was answered
dA ∈ {0,1} and candidate B was answered dB ∈ {0,1}. Equal treatment happens when
both candidates have the same answers. The corresponding proportion equals p(0,0)+
p(1,1). The other proportions indicate an unequal treatment, which is interpreted as
a discrimination because the applications have been made equivalent. In practice, the
researchers use the net discrimination coefficient against candidate B :

D(A,B) = Pr(A called back)−Pr(B called back)

= p(1,1)+p(1,0)− (p(1,1)+p(0,1))

= p(1,0)−p(0,1)

which is the excess probability of discriminatory cases against candidate B .3 Testing
the equality of the callbacks of the two candidates is equivalent to test p(1,0) = p(0,1).
If a correspondence test is done on a given occupation, this means that we define dis-
crimination at the job market level rather than at the firm level. D(A,B) > 0 means that
there is discrimination against candidate B at the job market level and D(A,B) < 0 that
there is discrimination against candidate A.

Now let us consider the discrimination test globally. What critical value should we
use? The null hypothesis is the absence of discrimination D(A,B) = 0 against D(A,B) 6=
0. Therefore we may defined the type I and II errors as in Table 2.

Table 2: Error types

XXXXXXXXXXConclusion
Truth

D(A,B) = 0 D(A,B) 6= 0

D(A,B) = 0 Correct Type II error (β)
D(A,B) 6= 0 Type I error (α) Correct

The standard test will take the absence of discrimination as the null hypothesis
(H0 : D(A,B) = 0). Then, we should distinguish two types of errors. The Type I error (α)
occurs when we reject the null hypothesis while it is true; in our context, it means that
we conclude that there is discrimination while there is none. The type II error happens
when we accept the null hypothesis while it is wrong; in other words, we conclude

2By a standard convention, the absence of answer is interpreted as a no.
3Also notice that D(A,B) =−D(B , A).

4



that there is no discrimination while there is some (β). The power of the test is ζ =
1−β, it is the probability to conclude that there is discrimination when this is true.
Standard test theory fixes α and let β (and so ζ) free. Moreover, the lower α, the lower
ζ. On small samples, a small type I error can correspond to a very small power. By
setting a low value for α, like 1%, we can end up with a very small probability to find
discrimination when there is some. A first approach keeps the same sample size and
argues that α should be taken relatively "high", like 5% or 10%. A second approach
proposes to determine an optimal sample size for a given testing problem. For a given
α, we will get a higher ζ if the sample size is larger.

Consider the first approach. Ideally, we would like to measure the cost of each error
type and to minimize a loss function. What is the cost of a type I error? If we conclude
that there is discrimination while there is none, the cost should be close do 0. Indeed,
if there is no discrimination, nobody can prove that there is some before a court and
no firm should be condemned for this. There should be no important prejudice. A type
II error can also be costly, since it implies that we conclude to no discrimination while
there is some. This conclusion could weaken the arguments of the workers discrimi-
nated against since discrimination is hard to prove. Moreover, this cost should be mul-
tiplied by the size of the population. Considering gender discrimination, even a small
discrimination coefficient would imply a very high cost because of the large size of the
population. Inconclusive results could even be used to weaken anti-discrimination
policies. This gives an incentive not to take a low α.

But the most satisfactory answer seems to determine an optimal sample size before
to run the experiment, so as to avoid adjusting theα on a qualitative, and somewhat ar-
bitrary, basis. We show below how to compute a minimal sample size, after presenting
the paired Student tests.

Once that the data have been collected we may seek to measure discrimination.
However some caution is to be taken. First we must keep in mind that the answers to
all the candidates on a same job are correlated, since the same recruiter replies to all
the candidates. This precludes to use independent samples tests or standard ordinary
least squares (henceforth, OLS) methods. We will use paired tests. A common prac-
tice consists in using stacked OLS regressions. We show that it provides both a good
measurement of discrimination and a bad estimation of the variances. The reason is
that standard OLS assume the independence of all observations when computing the
standard errors and, for this reason, cannot be used for a valid inference. Instead, one
should use either paired OLS regressions or clustered standard errors. We show that the
method of Arellano (1987), developed originally for panel data, can be used to compute
the standard error used in paired Student statistics. The next section describes how it
is possible to extract information from more complicated correspondence tests, and to
reveal the discriminatory component inside the callback rates. This part may also be
useful for the tests where all the candidates could not be sent on all the job adds. we
show how to make an optimal use of all the information available.

Proportions tests. Since we send several candidates on the same job ad, we can com-
pare them easily with a paired test. The advantage of paired tests is that, on the one
hand, they use the differences of treatment between two candidates so that their inter-
pretation is straightforward and, on the other hand, the paired tests do not require to
account explicitly for the correlation among the answers to the candidates, since the
statistic includes the right correction.

We consider two candidates selected among the total number of candidates. Con-
sider a job add i ∈ I, where I denotes the index set of all adds and let I denote their
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number. The set of candidates is denoted J and their number J. For candidate j ∈ J the
answer is coded as a dummy variable denoted d j i ∈ {0,1}, where, by convention, d j i = 0
represents a “no” and d j i = 1 a “yes”. The theoretical success probabilities associated
with the candidates are denoted p j . By definition d j i follows a Bernoulli process with
probability p j . Consider two candidates, J = {A,B}, we wish to perform the following
test:

H0 : p A −pB = 0

Ha : p A −pB 6= 0

Paired Student test. The null hypothesis is the absence of discrimination since both
candidates are treated equally on the same ads. In case of rejection, we can have either
discrimination against candidate A (p A < pB ) or discrimination against candidate B
(p A > pB ). The test can be done with a Student test. However, the reader should keep
in mind that we need a paired Student test. Indeed, the answers to all the candidates
on a given ad are correlated because they are given by the same recruiter. Therefore,
we cannot assume that the two candidates come from two independent samples, as
is usually done with the two-sample Student test. By convention, we will denote the
means with a bar, so that the empirical callback rate of candidate j is denoted:

d̄ j = 1

I

∑
I∈I

d j i , j ∈ J

When we have paired data, we can compute the difference of answers between the two
candidates for each ad and take the mean on this difference. Consider two candidates
for the job ad i , we observe the couple of answers (dAi ,dBi ), i ∈ I. The difference be-
tween the answers to candidates A and B, denoted δi = dAi −dBi can take three values
:

δi =


1 candidate A prefered
0 equal treatment

−1 candidate B prefered

The paired test is simply the Student test of a zero mean on this difference since:

E(δ) = E(dA −dB ) = p A −pB .

Since δ̄= d̄A − d̄B , testing that this quantity is close to 0 is equivalent to test for the
absence of discrimination. The paired Student statistic, denoted Tp equals:

Tp = |δ̄|√
V̂(δ̄)

where V̂ denotes the empirical variance. The following unbiased estimator is com-
monly used:

V̂(δ̄) = V̂(δ)

I
= 1

I(I−1)

∑
i∈I

(δi − δ̄)2

One can easily show that :

V̂(δ) = V̂(dA)+ V̂(dB )−2 ˆCov(dA ,dB )
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where ˆCov is the empirical covariance.4 Notice that the two-sample Student statistic
is obtained only when ˆCov(dA ,dB ) = 0. The Tp statistic is used to test the absence of
net discrimination. On large samples, we use the normal approximation.5 For a test at
the α level, we will reject the null hypothesis when Tp ≥ z1−α/2, where z is the quan-
tile of the standard normal distribution.6 Notice that we measure net discrimination
since some firms may prefer candidate A and others candidate B . What we measure is
whether, at the job market level, comparable candidates are treated equally.

Minimum sample size. The impossibility to control the power of the test may be un-
desirable from a social viewpoint. In this section we show how to compute the sample
size needed, for a test with a level α, a power ζ and a minimum detectable value for
δ= p A −pB . We consider the following test:

H0 : δ= 0

Ha : δ= δ∗

where δ∗ > 0 is a minimum detectable value. It represents the difference threshold
from which we consider that there is a relevant amount of discrimination. We wish to
reject H0 with probability α when H0 is true and to reject H0 with probability ζ when
Ha is true. In order to perform the test, we have a sample of treatment differences
δi , and compute their mean δ̄. We assume that δi has variance σ2. Using a normal
approximation, δ̄, should be distributed with a variance equal to σ2/I, with a 0 mean
under the null hypothesis and a δ∗ mean under the alternative hypothesis. We should
have:

Pr

(
δ̄> σu1−αp

I

∣∣∣∣H0

)
=α

where u1−α is the 1 −α quantile of the standard normal distribution (1.645 for α =
0.05). Under the null hypothesis, δ̄ should converge to zero and this equality should be
satisfied. Now, consider the power inequality. We should have:

Pr

(
δ̄> σu1−αp

I

∣∣∣∣Ha

)
≥ ζ.

We have the following equivalence:

δ̄> σu1−αp
I

⇔
p

I× δ̄−δ∗
σ

> u1−α−
p

I× δ∗

σ

since the left-hand term follow a standard normal distribution under Ha . We get:

Pr

(p
I× δ̄−δ∗

σ
> u1−α−

p
I× δ∗

σ

)
= 1−Φ

(
u1−α−

p
I× δ∗

σ

)
=Φ

(p
I× δ∗

σ
−u1−α

)
4An unbiased estimator is:

ˆCov(dA ,dB ) = 1

I −1

∑
i1∈I

∑
i2∈I

(dAi 1 − d̄A )(dBi 2 − d̄B )

.
5The Student distribution with N degrees of freedom converges to the standard normal distribution when

N →+∞.
6For α=1%, 5% or 10%, we get the respective critical values z =2.58, 1.96 and 1.645.
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so that:

Φ

(p
I× δ∗

σ
−u1−α

)
≥ ζ⇔ I ≥

( σ
δ∗

(Φ−1(ζ)+u1−α)
)2

.

Let us take an example. Let p A = 0.50 and p A −pB = δ∗ = 0.10. We also let α=β= 10%
so that the power is set at 90% (z0.9 = 1.28). We just need the variance of the statistic.
The callback dummies verify V(d j ) = p j (1−p j ) and we should compute :

V(dA −dB ) = V(dA)+V(dA)−2Cov(dA ,dB )

and we do not know their covariance. But we can use the following bound on the cor-
relation coefficient:

−1 ≤ Cov(dA ,dB )√
V(dA)V(dB )

≤ 1

which implies that the variances :

σ2 = V(dA −dB ) ≤ V(dA)+V(dA)+2
√

V(dA)V(dB ) = σ̃2

and we can use it to get an a conservative value for I . In our example, we get:

V(dA) = 0.25, V(dB ) = 0.24, σ̃2 = 0.98,

so that:

I ≥ 0.98

0.01
× (3.29)2 ' 642.

which is a relatively high value. A median assumption may ignore the covariance (since
it can be negative or positive) and in this case we would be σ2 = 0.49 and I ≥ 321.

Paired OLS regression. It is possible to perform the previous test by running a very
simple regression. One should just regress the treatment difference variable δi on the
constant term. The model is: δi = b0 × 1 + ui where b0 is the intercept and ui the
disturbance. Let eI be the column unit vector of size I and δ the column vector of all
δi . The OLS formula gives:

b̂0 = (e ′IeI)
−1e ′Iδ

= (
∑
i∈I

12)−1
∑
i∈I

1×δi

= 1

I

∑
i∈I
δi

= δ̄
The residual of this regression equals ûi = δi − b̂0 = δi − δ̄. Furthermore, denote σ̂2

the empirical variance of the residual, we have:

V̂(b̂0) = σ̂2(e ′IeI)
−1 = σ̂2

I

and standard OLS software will provide:

σ̂2 = 1

I−1

∑
i∈I

û2
i =

1

I−1

∑
i∈I

(δi − δ̄)2

so that we get V̂(b̂0) = V̂(δ̄). The Student statistic of the paired OLS regression is iden-
tical to the paired Student statistic. Unfortunately, this regression is not always used.
Instead, stacked regressions are often preferred. We show in the next section that they
provide the wrong variance and how it can be corrected.
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Stacked OLS regressions. Stacked regressions are popular in the applied literature. In
this setting, one performs a regression of the callback dummy variable on a constant
term and a dummy variable for the reference group. Consider our example, we define
a dummy variable x j i equal to 1 for belonging to group A (equal to 0 otherwise):

∀i , x j i =
{

1 if j = A
0 if j = B

where we notice that the definition does not depends on i . This is because, in a field
experiment, the explanatory variables are constructed: we send the two candidates on
the same ads. Another interesting point is the number of observations: we stack the I
answers of candidates A and B, so that the number of observations in the regression in
now 2I. In order to get the probability difference, we write a linear probability model
as:

d j i = c0 + c1x j i +u j i

with E(u j i ) = 0 without loss of generality provided the model includes a constant term.
We easily get:

E(dAi ) = c0 + c1

E(dBi ) = c0

so that, using E(d j i ) = p j , we get :

c0 = pB

c1 = p A −pB

therefore the theoretical value of the OLS coefficient c1 gives the discrimination coef-
ficient. The relationship is also valid for the empirical counterparts. We rewrite the
model as:

d j i = X j i c +u j i

with X j i = (1, x j i ) and c ′ = (c0,c1). Applying OLS is equivalent to solve the system
X ′X ĉ = X ′d . The cross products are specific: e ′2Ie2I = 2I since there are 2I observations
after stacking. For e ′2Ix = x ′e2I, we just need to consider that xAi = 1 and xBi = 0,∀i .
This gives:

e ′2Ix =∑
i∈I

∑
j∈J

x j i

=∑
i∈I

1

= I

and for x ′x we only need to remark that x j i = x2
j i since it is a binary variable. Therefore:

x ′x =∑
i∈I

∑
j∈J

x2
j i

=∑
i∈I

∑
j∈J

x j i

= I.
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For the right-hand cross products, we get:

e ′Id =∑
i∈I

∑
j∈J

d j i

=∑
i∈I

dAi +
∑
i∈I

dBi

= I× (d̄A + d̄B )

the total number of callbacks, and

x ′y =∑
i∈I

∑
j∈J

x j i d j i

=∑
i∈I

dAi

= I × d̄A

the number of callbacks received by candidate 1. Let I j = I× d̄ j be the number of call-
backs for the candidate j , we should solve:(

2I I
I I

)(
ĉ0

ĉ1

)
=

(
IA + IB

IA

)
.

Using: (
2I I
I I

)−1

= 1

I

(
1 −1
−1 2

)
,

we get : (
ĉ0

ĉ1

)
= 1

I

(
IB

IA − IB

)
=

(
d̄B

d̄A − d̄B

)
the OLS regression coefficient ĉ1 of the group dummy variable xi j equals δ̄ and mea-
sures discrimination.

The only problem with OLS is that it gives wrong standard errors. We will first show
that it gives the two-sample Student variance and how to fix the problem with a clus-
terisation of the covariance matrix. For the variance, we need to compute σ̂2

v (X ′X )−1.
Here we simply notice that ∀i :

ûAi = dAi − (ĉ0 + ĉ1) = dAi − d̄A

ûBi = dBi − (ĉ0) = dBi − d̄B

For the variance we should consider that there are 2I observations and 2 parameters,
which makes 2I−2 = 2(I−1) degrees of freedom:

σ̂2
u = 1

2(I−1)

∑
i∈I

∑
j∈J

û2
j i

= 1

2(I−1)

∑
i∈I

(dAi − d̄A)2 + (dBi − d̄B )2

= 1

2
(V̂(dA)+ V̂(dB ))
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and

V̂(ĉ) = 1

2
(V̂(dA)+ V̂(dB ))× 1

I

(
1 −1
−1 2

)
so that :

V̂(ĉ1) = 1

I
(V̂(dA)+ V̂(dB ))

which is the variance used in the two-sample Student statistic. It is not valid in this
context because the answers to a same ad are not independent from each other. We
show how to correct it in the next section.

Clustered variances. We need to account for the correlation between the callback
dummies from the same ad. When the disturbance covariance matrix is V(u) = σ2

uIdI,
the OLS variance formula is V(ĉ) =σ2

u(X ′X )−1 but when there are correlations between
the observations, we must write V(u) = Ω and the OLS variance formula becomes
V(ĉ) = (X ′X )−1X ′ΩX (X ′X )−1. In our case Ω has a specific shape, it is block diagonal,
since the callback decisions are assumed to be correlated on the same ad only. Let Ωi

be the 2×2 ad-level covariance matrix, d ′
i = (dAi ,dBi ) the callback vector of ad i and

Xi =
(

1 xAi

1 xBi

)
=

(
1 1
1 0

)
, Un =

(
uAi

uBi

)
the explanatory variables matrix and the disturbance vector for ad i . Notice that the ex-
planatory variable x is chosen by the econometrician and takes alternatively the values
1 and 0 on each ad. The OLS variance equals:

V(ĉ) =
(∑

i∈I
X ′

i Xi

)−1 ∑
i∈I

X ′
iΩi Xi

(∑
i∈I

X ′
i Xi

)−1

The structure of the data is similar to a balanced panel data problem, where the ad
i represents the individual, and the candidate j the time dimension. Arellano (1987)
proposed the following estimator:

V̂A(ĉ) =
(∑

i∈I
X ′

i Xi

)−1 ∑
i∈I

X ′
iÛiÛ ′

i Xi

(∑
i∈I

X ′
i Xi

)−1

In order to get the paired Student test, we just need to add the following correction for
the degrees of freedom:

V̂(ĉ) = I

I−1
V̂A(ĉ).

Using :

Ûi =
(

dAi − d̄A

dBi − d̄B

)
we get:∑

i∈I
X ′

iÛiÛ ′
i Xi = (I−1)× (

V̂(dA)+2 ˆCov(dA ,dB )+ V̂(dB ) V̂(dA)+ ˆCov(dA ,dB )
V̂(dA)+ ˆCov(dA ,dB ) V̂(dA)

)
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and (∑
i∈I

X ′
i Xi

)−1

= I−1 ×
(

1 −1
−1 2

)
so that

V̂(ĉ) =
(

V̂(d̄B ) ˆCov(d̄B , d̄A − d̄B )
ˆCov(d̄B , d̄A − d̄B ) V̂(d̄A − d̄B )

)
=

(
V̂(d̄B ) ˆCov(d̄B , δ̄)

ˆCov(d̄B , δ̄) V̂(δ̄)

)
.

Therefore, one just need to multiply the Arellano Student by
p

(I −1)/I in order to
get the paired t statistic. This correction is negligible on large samples.

1.3 Regression models

The previous models may be augmented by a list of explanative variables. Indeed, the
tester can choose the characteristics of the candidates, but s-he cannot choose the
characteristics of the firm. This opens the possibility to study conditional discrimi-
nation, which is a discrimination that occurs only on some labour contracts. For in-
stance, a worker may be discriminated on a long term contract but not on a short term
contract. In order to test for this assumption, we should add the contract term into
the model and evaluate its impact on the difference of treatment between the candi-
dates. There are two main ways to extend the comparison tests: paired regressions and
stacked regressions. With paired regressions, the relevant variable is the callback dif-
ference between two candidates. Any significant variable may reveal conditional dis-
crimination. Let us consider a recruiter that chooses between two candidates, j = A,B .
We will assume that each candidates generates a utility level, and that a candidate will
be invited each time a threshold is crossed. The utility of recruiter i for candidate j is
denoted:

v∗
j i = Xi b j +αi +ε j i (1)

where Xi are the observable firm characteristics, b j the regression coefficient for the
candidate j . The αi term is the job ad correlated effect (or “fixed effect”), since the
same recruiter replies to all the candidates and ε j i is the idiosyncratic error term, typ-
ically a white noise. We observe the callback dummy variable:

v j i =
{

1 if v∗
j i > 0

0 otherwise

where 0 is the normalized reservation utility level without loss of generality provided
the model includes a constant term. Notice that it may also depend on each recruiter
i through the unobservable term αi . The real assumption here is that all the candi-
dates face the same threshold, a point that may not always be true.7 Comparing two
candidates A and B , we can consider their utility difference for the recruiter:

δ∗i = v∗
Ai − v∗

Bi (2)

7Some recruiters may impose a higher standard to discriminated candidates (Heckman, 1998).
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three outcomes are possible :

δi =


1 A invited alone, if δ∗i ≥ cA

0 equal treatment, if cB ≤ δ∗i < cA

−1 B invited alone, if δ∗i < cB

where cA and cB are unknown thresholds. With our notations these three events will
occur with respective probabilities p10, p00 +p11 and p10. In other words, candidates
with similar utility levels will be treated equally, and discrimination will occur when
the recruiter perceives too strong a difference between them. We also notice that the
expectation of this variable equals:

E(δ) = 1×p10 +0× (p00 +p11)−1×p10 = D(A,B)

the discrimination coefficient we have already seen. The most straightforward exten-
sion to regression is obtained by combining (1) and (2). We get:

δ∗i = Xi bA +αi +εAi − (Xi bB +αi +εBi )

= Xiβ+ηi .

with β = bA − bB and ηi = εAi − εBi . The specific form of the model will depend on
the distributional assumption about η. The simplest case is the difference of two linear
probability models, which gives a linear probability model. The δ parameter will mea-
sure discrimination since we explain a difference of treatment. In order to simplify the
exposition, consider that we run a regression on the centred variables:

δi =β0 + (xi − x̄)β1 +ηi

Taking the expectation we get E(δi ) = β0, the constant term of the model. This is the
unconditional discrimination coefficient at the mean point of the sample (xi = x̄).
When β1 = 0, it is equal to D(A,B). It does not depend on the firms’ characteristics
or on the characteristics of the labour contract.8 The other discrimination term β1, on
the contrary, acts in interaction with the ad i ’s characteristics. This is the vector of the
conditional discrimination coefficients. A positive coefficient will indicate a discrimi-
nation source against candidate B , and a negative coefficient against candidate A. This
equation is easily estimated by OLS and does not need a clusterization of the variances
because the left-hand variable is taken in differences.

Ordered models. Although convenient, the linear probability model has the follow-
ing default: it could happen that the predictions get outside the [−1,1] range which is
compulsory for δi since it is the difference of two binary variables.9 In this case, one
may prefer making another assumption about the distribution of ηi . Assuming nor-
mality, ηi  N(0,σ2) will give an ordered Probit model, with:10

8Notice that the constant term of this regression does not have the usual interpretation because the left-
hand variable is a difference.

9One can check directly the predictions of the model.
10Ordered Logit models have also been used. It is possible to choose the model with a Vuong test (Vuong,

1989), like in Duguet and Petit (2005).
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Pr(di = 1) = Pr[Xi b +ηi ≥ cA]

= 1−Φ
(

cA −Xiβ

σ

)
,

Pr(di = 0) = Pr[cB ≤ Xiβ+ηi < cA]

=Φ
(

cA −Xiβ

σ

)
−Φ

(
cB −Xiβ

σ

)
Pr(di =−1) = Pr[Xiβ+ηi ≤ cB ]

=Φ
(

cB −Xiβ

σ

)
.

With this type of model, one should be careful that the thresholds will absorb the con-
stant term. For instance, consider the last probability, with β′ = (β0,β′

1) and Xi =
(1, xi − x̄):

Φ

(
cB −Xiβ

σ

)
=Φ

(
cB −β0 −β1(xi − x̄)

σ

)
so that we define a new set of parameters: γB = (cB −β0)/σ and γ1 = β1/σ and get the
probability:

Φ
(
γB −γ1(xi − x̄)

)
.

Performing a similar operation for the first probability, we define γA = (cA −β0)/σ, so
that overall:

Pr(di = 1) = 1−Φ(
γA −γ1(xi − x̄)

)
,

Pr(di = 0) =Φ(
γA −γ1(xi − x̄)

)−Φ(
γB −γ1(xi − x̄)

)
Pr(di =−1) =Φ(

γB −γ1(xi − x̄)
)

The software will typically give an estimate of (γA ,γB ,γ1). When the right-hand vari-
ables are centred, the discrimination coefficient at the average point of the sample
(xi = x̄) will be given by:

D̄(A,B) = Pr(di = 1)−Pr(di =−1)

= 1−Φ(γA)−Φ(γB )

and its asymptotic variance can be estimated by the delta method. Letting g (γ) = 1−
Φ(γA)−Φ(γB ), we get:

V̂γ̂) = δg

δγ′
(γ̂)Ω̂γ

(
δg

δγ′
(γ̂)

)′
where Ω̂γ is the estimated asymptotic covariance matrix of γ̂ provided by the software.
It is also possible to estimate an effect for each observation of di , and to compute their
average or to draw their density.

Stacked regressions. When the data is stacked, the estimation raises specific issues.
Consider the equation (1). Considering two candidates for the same ad, we have:

v∗
Ai = Xi bA +uAi

v∗
Bi = Xi bB +uBi
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with u j i =αi +ε j i . Letting V(αi ) =σ2
α, V(ε j i ) =σ j and u′

i = (uAi ,uBi ) we conclude that
there is an ad-level block correlation in the model:

V(ui ) =
(
σ2
α+σ2

A σ2
α

σ2
α σ2

α+σ2
B

)
so that a clusterization of the covariance matrix will be needed. Also notice that the
model is heteroskedastic between the two candidates, like in Neumark (2012). An ad-
ditional issue is raised when the ad fixed effect αi is correlated with the right-hand
variables: the estimates may not be consistent any more.11

Furthermore, even in the favourable case where the effect in not correlated, the
model should allow for bA 6= bB . The only solution is to add the cross products of a
group dummy with the Xi variables. In order to develop the argument, let us rewrite
the estimation problem. The individual will be indexed by n = 1, ...,2I since there are
two candidates for the I ads. We introduce a dummy variable, An , equal to 1 if the
individual n is in the potentially favoured group (A), 0 otherwise. Let us also assume
that the data is stacked at the ad level, so that all the odd indices refer to the A candi-
dates and all the even indices to the B candidates.12The regression equation should be
written:

v∗
n = XnbA + An Xn(bA −bB )+un

where un = uA,(n+1)/2 if n is odd and un = uB ,n/2 if n is even. When An = 1, we get
Xi bA +uAi and when An = 0 we get Xi bB +uBi . Notice that the X variables include
the constant term, so that the group dummy is among the regressors. A widespread
practice consists in estimating a model with X and A alone. It will be valid as long as
bA = bB for all the variables but the intercept. To make it more sensible, let Xn = (1, xn)
and b′

j = (b0 j ,b1 j ) for j ∈ {A,B}. We get:

v∗
n = b0A +b1A xn + An(b0A −b0B )+ An xn(b1A −b1B )

and it is clear that the model with xn and An alone can only be valid if b1A = b1B .
Overall the stacked model raises two problems. First, the fixed effect problem.

When there is no significant right-hand variable, ignoring the issue is not problem-
atic (as we saw), because there is no variable in the model that is susceptible to be
correlated with the fixed effect. But this result does not extend to models with explana-
tive variables, since a correlation with the fixed effect leads to inconsistent estimates.
A second problem happens when the coefficients of the explanative variables differ in
the two groups of workers. One should include the cross products of the explanative
variables with the group dummy among the regressors. Forgetting this cross products
will create a missing variable bias, because these missing variables are, by definition,
correlated with the regressors.

In conclusion, the paired ordered models, based on a difference of treatment be-
tween two candidates seem to be a better tool because they eliminate the fixed ef-
fect and allow for a differentiated effect of the explanative variables among the ap-
plicants to a job. They are also more easy to implement, since they do not require a
heteroskedastic Probit estimation.

11The issue is similar to the estimation of panel data models. When the individual effect is not correlated,
one must account for the covariance matrix between the disturbances. When the effect is correlated, one
should difference out the individual effects.

12The indices of the A candidates are given by 2i −1, for i = 1, ..., I , and the indices of B candidates by 2i .
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1.4 Component models

Some correspondence test have a more complicated structure than the basic tests that
we have studied so far. There may be several characteristics studied together (e.g, gen-
der and age) so that several candidates may be affected by the same type of discrimi-
nation. Young women and older women may both be discriminated because they are
women. Another example happens when all the candidates are not send to all the job
adds, but only a part of them with a rotation. All the paired comparisons cannot be
made on all the job adds, but only a part of them. In This case, we need to combine
the information from all the possible combinations in a coherent and efficient manner
(Duguet et al. (2018)). Several types of models can be used: linear or transformed. In
the first case, the estimation will proceed from callback rates differences of difference
in differences. It may be inconvenient when the callback rates are close to zero and
the model leads to prediction outside the unit interval. In the second type of model,
the predictions are bounded, and one has to work with concepts like odds ratios rather
than rates. Overall, both models allow to control for unobserved heterogeneity. These
models are also useful in overidentified cases. They allow for testing some restrictions
in the structure of discrimination.

A rationalization of differences method. A first way to use component model is for
determining the right differences to use in the comparisons and to deal with the case
where there are several ways to compute a given coefficient. Consider a situation with
two types of discrimination: gender and origin. We send four candidates on each of-
fer:13 the local origin man ( j = 1), the foreign origin man ( j = 2), the local origin woman
( j = 3) and the foreign origin woman ( j = 4). LetδO < 0 measure discrimination against
the foreign origin candidates and δG < 0 measure gender discrimination. The first can-
didate should not be discriminated and his callback probability should be of the form:

m1 = θ

where θ is labour market tightness. For the local origin woman, we can add a gender
discrimination component :

m2 = θ+δG

and for the foreign orign man, we should add an origin discrimination component:

m3 = θ+δO .

For the last candidate, we could think of adding the two discriminatory components
and to add a joint component, know as intersectionality in the literature (Tariq and
Syed, 2017). Denote it δOG . If δOG = 0, discrimination is additive, a foreign origin
woman will have a discrimination coefficient equal to the sum of the gender discrimi-
nation coefficient and of the foreign origin discrimination coefficient. If the coefficient
is negative, the discrimination will be stronger, discrimination is said to be superad-
ditive and if δOG > 0 the discrimination of the sum will be less strong that the sum of
discriminations and is said to be subadditive.

m4 = θ+δG +δO +δOG .

13The method can be adapted to any number of candidates, provided that at least two candidates are sent
on each offer.
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The θ parameter does not measure discrimination so that its estimation is not impor-
tant in this context. We will focus on the δ parameters. Taking the model in differences,
we get:

m2 −m1 = δG

m3 −m1 = δO

m4 −m3 − (m2 −m1) = δOG

we get gender discrimination by comparing the two local candidates since they do
not face origin discrimination, the origin discrimination is obtained by comparing the
two men since they do not face gender discrimination, and the joint discrimination
by comparing gender discrimination among the foreign origin candidates with gender
discrimination among the local origin candidates. Writing a components model allow
to determine the right comparisons easily. It also works when there are less parameters
to estimate than probability differences, as we show later in the chapter.

A discrete choice model. We model the probability of a callback. For any candidate j
on job ad i we let v∗

j i be the recruiter’s gain associated with a callback:

v∗
j i = m j i +αi +ε j i (3)

where m j i is the model for candidate j on job i . Its form depends on each experiment
and includes the discriminatory components that we wish to estimate. The αi term is
the job ad correlated effect (or “fixed effect”), since the same recruiter replies to all the
candidates and ε j i is the idiosyncratic error term, typically a white noise. We observe
the callback dummy :

v j i =
{

1 if v∗
j i > 0

0 otherwise

It equals 1 when recruiter calls the candidate back, and zero otherwise. We wish to es-
timate the model from a sample of dummy variables and the characteristics of the can-
didate, chosen by the researchers who ran the experiment. First, we need to eliminate
the unobserved heterogeneity term αi . Let Fε be the c.d.f. of ε, we get the theoretical
callback probability:

P j i = Pr(v j i = 1) = Pr(v∗
j i > 0) = 1−Fε

(−(m j i +αi )
)

.

These probabilities have empirical counterparts and, with an assumption on Fε, we
can estimate the model components. Notice that the fit of several distributions can be
compared with our method. In order to eliminate the αi terms, we need to compare
the answers to two candidates on the same job ad. Let j = 1 be a freely chosen reference
candidate, with no loss of generality, we eliminate αi with the following differencing:

Di ( j ,1) = F−1
ε (1−P1i )−F−1

ε (1−P j i ) = m j i −m1i .

By definition of the callback probabilities, the difference m j i −m1i term contains the
discrimination terms that we wish to estimate. Simplification occurs when ε is as-
sumed to have a symmetric distribution. In this case we get:14

P j i = Fε
(
m j i +αi

)
14The method can be applied without this assumption.
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and we can take the difference:

∆i ( j ,1) = F−1
ε (P j i )−F−1

ε (P1i ) = m j i −m1i .

Three well-known cases are worth commenting. First, the default case of correspon-
dence studies is the linear probability model, which leads to a direct comparison of the
callback probabilities. Assuming a uniform distribution, Fε(ε) = ε, we get:

∆i ( j ,1) = P j i −P1i .

and the coefficients can be interpreted as percentage points. Another case encoun-
tered is the Logit model. It has the advantage to constrain the estimated probabilities
in the [0,1] interval. Assuming a logistic distribution, Fε(ε) = 1/(1+exp(−ε)), we must
take the difference of the log odds ratios of the two candidates:

∆i ( j ,1) = ln
P j i

1−P j i
− ln

P1i

1−P1i
.

and the coefficients are to be interpreted as log-odds ratios. Finally, with the Nor-
mit/Probit model, we get :

∆i ( j ,1) =Φ−1(P j i )−Φ−1(P1i )

where Φ is the cdf of the standard normal distribution, and the coefficients are more
difficult to interpret than in the two previous cases. Now that the unobserved hetero-
geneity term has been eliminated, we can discuss the identification of the discrimina-
tory components.

Consider the example of gender and origin. We would like to compare the four
candidates of our previous example : local origin man ( j = 1), local origin woman ( j =
2), foreign origin man ( j = 3), foreign origin women ( j = 4). We had :

m1 = θ
m2 = θ+δG

m3 = θ+δO

m4 = θ+δG +δO .

For the clarity of the exposition, we impose δOG = 0 in order to get an overiden-
tified case (i.e., more probability differences that discrimination parameters). Overi-
dentified cases happen easily when several discrimination items are allowed for. The
consequence of it is that there are now several ways to estimate the discrimination pa-
rameters. We get the three following differences:

∆(2,1) = m2 −m1 = δG

∆(3,1) = m3 −m1 = δO

∆(4,1) = m4 −m1 = δG +δO

Since the left-hand of this system has an empirical counterpart, we should estimate our
two parameters from three statistics. We system is overidentified, there are more statis-
tics than needed. In order to proceed to the estimation, we should use a minimum
distance estimation method and test the validity of the restriction: ∆(2,1)+∆(3,1) =
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∆(4,1). It is an additivity property. Let us rewrite our constraints: ∆(2,1)
∆(3,1)
∆(4,1)


︸ ︷︷ ︸

π

=
 1 0

0 1
1 1


︸ ︷︷ ︸

C

(
δG

δO

)
︸ ︷︷ ︸

β

or

π=Cβ

The auxiliary parameter π is easily estimated from the data, β is the interest parameter,
and is not directly observable. In order to estimate β, we need to replace π with an
estimate π̂. Let:

π̂=π+ω

where ω is the estimation error on the auxiliary parameter. Substituting into the iden-
tification constraints, we get an equation that can be used for estimation:

π̂=Cβ+ω

where π̂ and C are observable, so that a minimum distance estimation is feasible. Let
Ω = V(ω), its diagonal elements are the variances of the auxiliary parameters estima-
tors, and the off diagonal term, the covariance between the estimators. They are cor-
related because the answers to all the candidates come from the same recruiter. The
optimal estimator of β is the Feasible Generalized Least Squares (FGLS) estimator:

β̂= (C ′Ω̂−1C )−1C ′Ω̂−1π̂

It is asymptotically normal and its asymptotic covariance matrix can be estimated by
the following statistic:

V(β̂) = (C ′Ω̂−1C )−1

where Ω̂ is a consistent estimate of Ω. The overidentification statistic, denoted S, is
simply an estimate of the norm on the identification constraints, we get:

S = ω̂′Ω̂−1ω̂

with ω̂= π̂−C β̂. Under the null hypothesis (H0 : π=Cβ), it is χ2(1) distributed. More
generally, for an overidentified system, the degrees of freedom equal the difference
between the number of auxilliary parameters and the number of structural parameters.
This statistic or its p-value can be used as a choice rule for Fε. Indeed, π depend on the
callback probabilities and on the specific functional form Fε. Taking the distribution
with the highest p-value is therefore equivalent to take the distribution which fits the
best the identification constraints.

Rotating candidates. In order to avoid detection, it is possible to send only a part
of the candidate each time. For the simplicity of exposition, suppose that we send
the benchmark candidate ( j = 1) and only one of the other candidates. We could still
compute estimates of the ∆ j and apply the method. Notice that we do not even need
that the number of ads is the same for all the candidate. In fact, we do not even need
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to send the benchmark candidate all the time, but just two candidates, because what
matters is to relate the auxiliary parameters to the structural parameters. With four
candidates, there are 6 possible differences :

∆(2,1) = m2 −m1 = δG

∆(3,1) = m3 −m1 = δO

∆(4,1) = m4 −m1 = δG +δO

∆(3,2) = m3 −m2 = δO −δG

∆(4,2) = m4 −m2 = δO

∆(4,3) = m4 −m3 = δG

and any combination involving the four candidates will provide an estimate provided
that the A matrix is adapted. For instance, if we use ∆(2,1), ∆(3,2) and ∆(4,3), we sim-
ply need to write :  ∆(2,1)

∆(3,2)
∆(4,3)


︸ ︷︷ ︸

π

=
 1 0

−1 1
1 0


︸ ︷︷ ︸

C

(
δG

δO

)
︸ ︷︷ ︸

β

and proceed as before.

Ad dependent model. In some cases, the model may depend on an ad characteris-
tics, like the contract length. The method will be the same but this time, there will be
one equation for each candidate, depending on they reply to short term or long term
contracts. The same method is applied with more equations.

Backward selection. When a component is not significant, a new estimation should
be made in order to reduce the variance of the remaining estimators. The variance is
lower because more observations are used to estimate the remaining parameters. In
order to illustrate this point, consider the following system:

∆(2,1) = m2 −m1 = δG

∆(4,1) = m4 −m1 = δG +δO

If, say, δO = 0, the system becomes:

∆(2,1) = m2 −m1 = δG (4)

∆(4,1) = m4 −m1 = δG (5)

and, assuming that each candidate is sent on all ads, we have twice more observations
to estimate δG . Now, we can use both ∆(2,1) and ∆(4,1). A standard solution is:15

1

2
∆(2,1)+ 1

2
∆(4,1) = δG (6)

and the estimation proceeds as usual, with a change of the left-hand variable. This also
shows that process of backward selection is very different from the standard OLS case.
For a more detailed presentation, see Duguet et al. (2018).

15More generally, the weight of each difference is proportional to its number of observations.
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Rotation of the candidates. A rotation of the candidate simply reduces the number
of observations available for each difference. Therefore, the empirical probabilities are
computed as usual, and the method can be applied without any change. This remark
is also valid when the rotation is not balanced among the candidates. The only con-
straint is to send at least two candidates on each ad, in order to compute a difference
of treatment.

1.5 Structural estimation

The previous analyses are often thought of as subject to the Heckman critique (Heck-
man, 1998). First, all audit studies adjust as much characteristics as they can. However,
there may be other characteristics, related to productivity and with a different distribu-
tion in the two groups. In this case, the results can be biased. Second, recruiters may
apply different rules to different candidates. People from a discriminated group may
be applied a higher standard for hiring. Neumark (2012) proposes an answer to the
first Heckman critique. Consider two groups j = A,B where the group B is subject to
discrimination. Let us consider that the productivity of the workers depend on two sets
of variables X̃ = (X ,ε), where X is controlled in the experiment and ε is not. Finally, let
α be a summary of firm-level characteristics. The productivity of a worker is denoted
y(X̃ ,α). Let T ∗ be a function denoting the outcome of the worker in the labour market,
like a callback rate (the “treatment” of the worker). There is discrimination when two
identical workers are not treated equally:

T ∗(y(X̃ ,α), A) 6= T ∗(y(X̃ ,α),B)

Assuming a linear model, we can write:

y(X ,α) = X b +ε+α

and the treatment:

T ∗(y(X ,α),dB ) = y +d ×dB

with dB = 1 then the worker belongs to group B and 0 when s-he belongs to group
A. The parameter d < 0 measures discrimination since it applies only to the B group,
while it is not related to X̃ or α. The expected productivities in the two groups are
denoted y∗

j . The experiment send two candidates j = A,B and records their treatment

by the recruiter:

T ∗(y∗
B ,1)−T ∗(y∗

A ,0) = y∗
B − y∗

A +d .

The goal of correspondence tests is to set y∗
A = y∗

B , so that the treatment difference
reflects discrimination, measured by d . It can be obtained by an OLS regression of
T ∗ on dB and a constant term. Now consider the detailed list of variables influencing
productivity X̃ = (X ,ε). The first variable X is controlled in the experement, but the
second variable ε is not. Let X̃ j denote their values for the candidate j . A tested pair of
candidates (A,B) should verify:

y∗
A = X Ab +εA +α

y∗
B = XB b +εB +α
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so that the difference of treatment equals:

T ∗(y∗
B ,1)−T ∗(y∗

A ,0) = XB b +εB +α+d − (X Ab +εA +α)

= εB −εA +d .

when the correspondence test imposes X A = XB . The hypothesis E(εA) = E(εB ) guar-
antees an unbiased estimation of d . But this is not the end of the argument, since there
is also a variance issue.16

Let us assume that a callback will be made if the expected productivity (or utility)
crosses a given threshold. A recruiter may favour the group with the higher variance
because it has a larger probability to cross the threshold c. More precisely, consider the
binary treatment T :

T (y(X̃ ),dB ) =
{

1 if T ∗(y(X̃ ),dB ) > c
0 otherwise

Consider a correspondence test with X = X A = XB , the discriminated group will receive
a callback when X b +εB +d +α > c while the non discriminated group will receive a
callback when X b +εA +α> c. Assuming that α∼ N(0, s2

α) and ε j ∼ N(0,σ2
j ) are inde-

pendent, then u j = α+ε j  N(0,σ2
j ) with σ2

j = s2
j +σ2

α. We get the following callback

probabilities:

p A = Pr
[
T ∗(y(X ,u j ),0) > c

]
(7)

= Pr[X b +uA > c]

=Φ
(

X b − c

σA

)
whereΦ is the cdf of the standard normal distribution, and similarly :

pB = Pr
[
T ∗(y(X ,u j ),1) > c

]
(8)

= Pr[X b +uB +d > c]

=Φ
(

X b +d − c

σB

)
We get the following callback difference, which is currently used for measuring dis-
crimination:

p A −pB =Φ
(

X b − c

σA

)
−Φ

(
X b +d − c

σB

)
Therefore, even in the absence of discrimination, d = 0, we can have different callback
probabilities when σA 6= σB . Assuming σA < σB would imply p A > pB in the absence
of discrimination. In order to detect discrimination, we would like to estimate the pa-
rameter d . If we estimate the callback probability models in the two groups, we would
get the following:17

p A =Φ (cA +X bA) (9)

pB =Φ (cB +X bB )

16The focus on the two first moments is related to the normal distribution used later, since a normal dis-
tribution is fully defined by its two first moments.

17It is also possible to estimate a heteroskedastic Probit model, like in Neumark (2012). Notice that sep-
arate Probit estimates insures heteroskedasticity but deserves additional computations in order to get the
joint covariance matrix of both candidates estimates.
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the previous parameters π′ = (cA ,b′
A ,cB ,b′

B ) are called the auxiliary parameters be-
cause they do not always have a direct interpretation. We simply obtain them directly
when we estimate the callback probabilities. Their value is to get the interest param-
eters. An obvious example of interest parameter is the d parameter, which measures
discrimination. Another parameter is the ratio of the standard errors ψ = σB /σA . We
let β′ = (ψ,d) be the vector of interest parameters. Since the Probit model coefficients
are identified up to a positive number, we will set σA = 1 without loss of generality.
Using Using (7), (8) and (9), we get the following constraints:

cA =ψcB −d , bA =ψbB .

that we can rewrite in the following manner:(
cA

bA

)
︸ ︷︷ ︸

πA

=
(

cB −1
bB 0

)
︸ ︷︷ ︸

C (πB )

(
ψ

d

)
︸ ︷︷ ︸

β

and the estimation can proceed with asymptotic least squares (ALS), which was orig-
inally developed in Chamberlain (1982), Chamberlain (1984) and Gouriéroux et al.
(1985). More precisely, πA and A(πB ) have empirical counterparts, so that a consis-
tent and asymptotically normal estimator can be obtained for β. Also notice that bA

and bB may be vectors so that the estimation problem will generally be overidentified.
The implicit assumption with this method is that there should be at least one variable
in X that has a monotonic effect on the callback rate (positive or negative). Replacing
π by an estimate π̂, we get:

π̂A =C (π̂B )β+ω

where ω is an error term created by the replacement of π by π̂. We obtain a first step
estimator by performing OLS on this relationship and get:

β̂= (C (π̂B )′C (π̂B ))−1C ′(π̂B )π̂A

Letting ω= g (π̂,β) = π̂A −C (π̂B )β, its asymptotic variance equals:

Ω(π̂,β) = V(ω)

= ∂g

∂π′ (π̂,β)V(π̂)

(
∂g

∂π′ (π̂,β)

)′
with

∂g

∂π′ (π,β) =
(

1 0(1,k) −ψ 0(1,k)

0(k,1) Idk 0(k,1) −ψIdk

)
where k is the number of regressors in X (excluding the constant term). Replacing ψ
by the ψ̂ obtained in the first stage estimation. We get the FGLS estimator:

β∗ = (
C (π̂B )Ω(β̂)−1C (π̂B )

)−1
C (π̂B )Ω(β̂)−1π̂A

with the asymptotic covariance matrix:

V̂(β∗) = (
C (π̂B )Ω(β∗)−1C (π̂B )

)−1
.
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vB

v A
0

v A < 0 < vB

B invited

v A , vB < 0

none invited A invited

vB < 0 < v A

45◦vB > v A > 0
B called first

v A > vB > 0
A called first

Figure 1: Callback decisions

1.6 Evaluation with ranks

When the data are collected not only about the answers to the candidates but also
about their order of reception, it is possible to test for the existence of stronger forms
of discrimination (Duguet et al., 2015). Consider a recruiter with preferences for the
candidates A and B represented by the utilities UA and UB . These utilities are spe-
cific to each recruiter and result from pre-conceptions about the candidates, because
the candidates are equally productive by construction of the correspondence test ex-
periment. Each recruiter has a reservation utility level UR above which the candidates
are invited to an interview. We can define the relative utility levels v A = UA −UR and
vB =UB −UR . The four potential answering cases can be represented in the following
way. If v A < 0 and vB < 0, no candidate is invited to an interview. When v A < 0 < vB ,
only candidate B is invited; when vB < 0 < v A , only candidate A is invited. Finally,
when v A > 0 and vB > 0, both candidates are. These cases are illustrated in Figure 1.
The standard measure of discrimination against candidate B , used in the literature,
considers only cases in which only one of the two candidates is invited. These cases
are illustrated by the North-West and the South-East quadrants of Figure 1. We denote
this discrimination coefficient as D(A,B):

D(A,B) = Pr[vB < 0 < v A]−Pr[v A < 0 < vB ]
= Pr[A invited,B uninvited]−Pr[B invited,A uninvited]

According to this measure, there is no discrimination when both candidates have equal
chances to be invited, and a positive number indicates that candidate A is, on average,
preferred to candidate B .

It is possible to extend the standard measure of discrimination D(A,B) to the rank-
ing of the candidates when both are invited, which is equivalent to consider all the
quadrants in Figure 1. In order to compare the rankings of two candidates, we use
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the concept of first order stochastic dominance. Suppose that we have J candidates,
ranked according to the recruiter’s utilities. The candidates that have not been invited
satisfy the condition that v j = U j −UR < 0. The ranking of the candidates (from 1st
to Jth) results from the recruiter’s tastes for the candidates. The highest utility corre-
sponds to the candidate ranked first, and negative utilities correspond to the candi-
dates that have not been invited. In order to perform our analysis, we need to separate
the candidates that have not been invited from the others by creating a rank J+1. This
additional rank is required because the candidates that have not been called cannot
be ranked between themselves. We only know that the uninvited candidates’ utilities
are below the recruiter’s reservation utility levels and therefore that they are ranked
behind the candidates that have been invited. Consider first the case for which all
the candidates have been invited. Using the order statistic, denoted (), we obtain the
ranking of the utilities of the candidates

{
j1, j2, . . . , jJ

}
, 0 < v( j1) ≤ v( j2) ≤ ·· · ≤ v( jJ), that

corresponds to the ranking J, J−1, . . . ,1. When only k candidates are invited, we have
the ranking v( j1) ≤ . . . v( jJ−k ) < 0 < v( jJ−k+1) ≤ ·· · ≤ v( jJ) that corresponds to the ranking
J+1, . . . , J+1,k, . . . ,1. The first stochastic dominance (henceforth, FOSD) of candidate
j1 over candidate j2 is defined as:

Pr[v j1 ≥ v] ≥ Pr[v j2 ≥ v] ∀v,

and ∃ v̄ such that Pr[v j1 ≥ v̄] > Pr[v j2 ≥ v̄],

which means that candidate j1 has a higher probability to reach a given utility level
than candidate j2, whatever the utility level is. This relationship is especially easy to
interpret when v is set at the reservation utility level of the recruiter, since it means
that candidate j1 has a higher probability to be invited to the interview than candidate
j2. This is the standard discrimination measure. We also see that FOSD covers more
cases than the standard discrimination measure because it makes use of all possible
utility thresholds.

For practical reasons we work with the ranks, since they are observable while the
utilities are not. We just need to reverse the inequalities inside the probabilities, since
the higher the utility the lower the rank (rank 1 for the most preferred candidate with
utility v( jJ)) :

Pr[r j1 ≤ r ] ≥ Pr[r j2 ≤ r ] ∀r ∈ {1, . . . , J +1}

and ∃ r̄ such that Pr[r j1 ≤ r̄ ] > Pr[r j2 ≥ r̄ ]. (10)

Consider the case r = 1. Then Pr[r j ≤ 1] = Pr[r j = 1], which gives the probability to
be ranked first. If the inequality (10) holds, the candidate j1 has a higher probability
to be ranked first than the candidate j2. Now set r = 2. We conclude that candidate
j1 also has a higher probability to be ranked among the two first candidates than can-
didate j2. Performing the comparisons up to r = J , Pr[r j ≤ J] is the probability that
candidate j is invited to the interview. Therefore candidate j1 has a higher probability
to be invited to the interview than candidate j2. In summary, when j1 FOSD j2, the
candidate j1 always has a higher probability to be in the preferred group than the can-
didate j2, whatever the definition of the preferred group is. This definition is especially
relevant for the measurement of discrimination, and this is what motivates the use
of FOSD. Graphically, FOSD means that the CDF of candidate j1 – defined on ranks–
stands above the CDF of candidate j2.
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The implementation of the test is rather straightforward since the correspondence
tests provide the empirical CDF directly. Consider the empirical distributions of the
ranks for candidate j :

p̂ ′ = (p̂1( j ), . . . , p̂J( j ))

and the corresponding empirical covariance matrix Σ̂ = V̂(p̂). The CDF at rank r is
given by P̂r = M ′

r p̂, with

Mr︸︷︷︸
(1,J)

= (1, . . . ,1︸ ︷︷ ︸
r times

, 0, . . . ,0︸ ︷︷ ︸
J−r times

)

For example, with three ranks

p̂ =
 p̂1

p̂2

p̂3


the cdf is given by:

M1p̂ = (1,0,0)p̂ = p̂1

M2p̂ = (1,1,0)p̂ = p̂1 + p̂2

M3p̂ = (1,1,1)p̂ = p̂1 + p̂2 + p̂3 = 1

and the covariances are given by V(Mr p̂) = Mr Σ̂M ′
r . Now, we consider the distributions

of two candidates, j1 and j2, and stack them in a 2× J vector p̂ ′ = (p̂ ′
j1

, p̂ ′
j2

), Σ̂ be the

associated joint 2J ×2J covariance matrix, which accounts for the correlation between
the ranks. Let Dr = (Mr ,−Mr ), then the difference between the cumulative distribution
functions of candidates j1 and j2 equals:

∆P̂r = Dr p̂ = (Mr ,−Mr )

(
p̂ j1

p̂ j2

)
= M ′

r p̂ j1 −M ′
r p̂ j2

= P̂ j1 − P̂ j2

and the covariance matrix is obtained by V(Dr p̂) = Dr Σ̂D ′
r . Therefore, we can per-

form a Wald test at each point r of the CDF. The following statistics is chi-squared dis-
tributed, with one degree of freedom under the null hypothesis P j1 = P j2 :

Sr = Dr p̂(Dr Σ̂D ′
r )−1p̂ ′D ′

r .

2 The evaluation of wage discrimination

2.1 The wage regressions

The Mincer equation Many estimation method start with the wage equation (Min-
cer, 1958). Restricted to the people at work, for a sample of size I, it can be written:

wi = Xi b1 +ui , i ∈ I (11)

where wi = lnWi is the log-wage of worker i , Xi the observable individual data, often
called the endowments, like tenure, the years of schooling or the occupation, and ui a
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zero-mean disturbance, without loss of generality provided the model includes a con-
stant term. Under standard assumptions this wage equation can be estimated by OLS.
This regression will be used on the datasets where no information is available on the
jobless people. It will be the case, for instance, with matched employer-employee data,
since workers are sampled inside firms.

The Heckman selection model. Sometimes, more data are available. The labour force
surveys generally include information both about the workers, the unemployed and
the inactive people. In this case, we need a two-part model (Heckman, 1976). First,
there is a labour market participation equation. A straightforward motivation is the
reservation wage theory. If the offered wage is above the reservation wage, the worker
takes the job and we observe the wage, otherwise we don’t. This participation equation
can be written:

d∗
i = Hiγ+ vi ,

where d∗
i is a latent, unobservable variable which summarizes the labour participation

process. One may think of it as the difference between the offered wage and the reser-
vation wage. The right-hand variables H include the determinants of participation.
The household composition and the replacement revenues may be important deter-
minants. vi is a disturbance. We observe the following binary variable, which equals 1
when i participates in the labour market, 0 otherwise :

di =
{

1 if d∗
i > 0

0 otherwise

This equation will be estimated with a binary model (Probit or other). The important
point is that we observe the value of the wage when there is a participation only. There-
fore, if there is a correlation between the disturbances (ui , vi ), OLS will suffer from a
selection bias. Several solutions can be proposed to this problem. The first is the joint
estimation of the model by maximum likelihood. Assuming the joint normality of the
disturbances: (

ui

vi

)
∼ N

((
0
0

)
,

(
σ2 ρσ

ρσ 1

))
where σ2 if the variance of the disturbance in the wage equation and ρ is the linear
correlation coefficient of the two disturbances. Notice that the variance of the par-
ticipation equation has been normalised to 1, like in a Probit model. Under this as-
sumption, we obtain a Tobit 2 model in the terminology of Amemiya (1985). SAS and
R typically allow for the estimation of this two-equation model.18 The second, more
popular method, is the Heckman method (Heckman, 1976). It relies on the following
conditional expectation:19

E(wi |Xi , Hi ,di = 1) = Xi b +σρϕ(Hiγ)

Φ(Hiγ)
.

whereϕ andΦ are respectively the pdf and the cdf of the standard normal distribution.
Ignoring the sample selection di = 1 can be interpreted as a missing regressor problem.

18SAS with the QLIM procedure and R with the sampleSelection package.
19Notice that when the right-hand variables are the same in the two equations, the identification proceeds

from a functional form assumption only. It is better to use an exclusion restriction, with at least one variable
present in the Probit equations and not in the wage equation (see Olsen (1980) for a discussion).
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The estimation can proceed in two step. First, one estimates γwith a Probit model and
computes the estimated inverse of Mills ratio:

λ̂i = ϕ(Hi γ̂)

Φ(Hi γ̂)

where ĉ is the maximum likelihood estimator of the Probit model. In a second step,
we perform the OLS regression of wi on the variables (Xi , λ̂i ), on the selected sample
(di = 1). Let θ =σρ, we get b̂ and θ̂ in this second step. The covariance matrix of these
estimators should be computed according to Heckman (1979) because one regressor
is estimated. See also Murphy and Topel (2002). In some cases, we need the selection-
corrected wage:

ỹ1i = y1i − θ̂λ̂i

In practise, one can combine the two methods, and use the Tobit 2 maximum likeli-
hood estimate of γ instead of the Probit estimate.20

2.2 The Oaxaca-Blinder decomposition

Labour market samples typically exhibit average wage differences between groups (men
and women, say). A part of these differences may be justified by objective differences
between the workers. In one group, workers may be older or with a longer education.
This will create wage differences we can explain. The Oaxaca-Blinder decomposition
is a method for separating the average wage differences attributable to the observed
characteristics of the workers, from the wage differences attributable to a group mem-
bership (Oaxaca (1973), Blinder (1973)).

Presentation. Let us consider two groups of workers, A and B . Following Becker
(Becker (1971), p. 22), we can define a market discrimination coefficient (MDC) by
comparing the observed wage (WA ,WB ) and the theoretical wages without discrimina-
tion (W ∗

A ,W ∗
B ):

MDC = WA

WB
− W ∗

A

W ∗
B

In the previous expression, W ∗
A /W ∗

B represents the wage difference in the absence of
discrimination. This difference comes from the productivity differences of the workers
and are therefore justified. The expression WA/WB represents the real world wage dif-
ference. It includes both the justified wage difference and the unjustified one, which
we refer to as wage discrimination. Since the Mincer equations refer to a wage in loga-
rithm, we will prefer to work with the log-wage, denoted w j = lnW j , j ∈ {A,B}. We will
use the following approximation:21

MDC = WA −WB

WB
− W ∗

A −W ∗
B

W ∗
B

' ln

(
1+ WA −WB

WB

)
− ln

(
1+ W ∗

A −W ∗
B

W ∗
B

)
= lnWA − lnWB − (lnW ∗

A − lnW ∗
B )

= w A −wB − (w∗
A −w∗

B )

20The Tobit 2 estimator should reaches the Fréchet-Darmois-Cramer-Rao asymptotic variance lower
bound when the distribution is bivariate normal.

21ln(1+x) ' x, for x ' 0.
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Suppose that we have two groups of workers, A and B , with respective wages w A and
wB . The difference of their wages may reflect any difference between them, including
but not restricted to, wage discrimination. Suppose that we find a method to compute
the non discriminatory wages, we denote them w∗

A and w∗
B . Then we should measure

wage discrimination against group B by the following quantity:22

MDC = w A −wB − (w∗
A −w∗

B ).

The justification is the following. Since (w∗
A , w∗

B ) are not discriminatory by assump-
tion, the difference w∗

A −w∗
B represent the justified wage difference. It comes from the

productivity differences between the workers. Since the distribution of workers’ pro-
ductivity is not the same in the groups A and B , there is a average wage difference.
Now, consider (w A , wB ), they are the real-world wage distributions. By definition, they
include the effect of all the differences among the two groups of workers, both justified
and unjustified. Therefore the difference D(A,B) measure the unjustified wage differ-
ence that the workers in the group A benefit from (compared to the worker in the group
B). We obtain this quantity as a “residual”, that is as a difference. But this is not the def-
inition of the residual that is used in econometrics. It is rather an accounting residual.
The methods that we will present in this section simply differ by the definition that
they take for (w∗

A , w∗
B ). Once a choice is set, a decomposition method follows.

Method. Let b∗ be the regression coefficient for the non discriminatory wage equa-
tion, we have the theoretical wage equation:

w∗ = X b∗

and all the differences of wages between the groups A and B come from differences
in productive characteristics X . If the average characteristics of group j is X j , with
j ∈ {A,B}, we get :

w∗
A −w∗

B = (X A −XB )b∗

applying this result at the mean point of the sample, we obtain the average wage dif-
ference that we should observe in the absence of discrimination:

w̄∗
A − w̄∗

B = (X̄ A − X̄B )b∗.

Now let us consider discrimination. We clearly need the regression coefficient to dif-
fer between the two groups. What does this mean? That the same characteristics will
not have the same return in the two groups any more. For instance, one year of ex-
perience will be less paid in group B than in group A for discriminatory reasons. This
simply state that the average wage difference between two groups of identical workers
must originate in a difference of the way their productive characteristics are paid. Now
consider the two real-world regressions, obtained separately from the A and B groups.
The observed wage is equal, by definition, to the sum of the predicted wage and the
residual. We can write:

w j = X j b̂ j + û j

22By convention, a positive difference will indicate wage discrimination. The use the log-wages because it
is the common practice in the literature.
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with b̂ j = (X ′
j X j )−1X ′

j w j . Another property is that the mean of the residual is zero

provided there is a constant term among the regressors. This allows for writing, with
j = A,B :

w̄ j = X̄ j b̂ j with w̄ j = 1

I

∑
i∈I

w j ,i , X̄ j = 1

I

∑
i∈I

X j ,i .

Therefore the difference between the groups A and B equals:

w̄ A − w̄B = X̄ A b̂A − X̄B b̂B

The discrimination coefficient is defined by:

D(A,B) = w̄ A − w̄B − (w̄∗
A − w̄∗

B )

= X̄ A b̂A − X̄B b̂B − (X̄ A − X̄B )b∗

= X̄ A(b̂A −b∗)+ X̄B (b∗− b̂B )

and we get the definition in Oaxaca and Ransom (1994). This is equivalent to use the
following decomposition of the average wage:

w̄ A − w̄B = X̄ A(b̂A −b∗)+ X̄B (b∗− b̂B )+ (X̄ A − X̄B )b∗ (12)

Consider the case where B is discriminated against. The first term X̄ A(b̂A −b∗) mea-
sures the nepotism in favour of group A since it is an extra wage compared to the non
discriminatory case. The term X̄B (b∗−b̂B ) represents, on the contrary, the revenue lost
caused by discrimination. The last term represents the wage difference justified by the
difference of observable characteristics. There remains to choose b∗, this leads to the
“index number problem” (Oaxaca (1973)).

2.3 The index number problem

In the original paper, Oaxaca (1973) makes an application with b∗ = b̂A (the men wage
structure, denoted A) and b∗ = b̂B (the women wage structure, denoted B), suggest-
ing that this will give an interval for the non discriminatory wage structure. Choosing
b̂A is equivalent to assume that the group A, which is not discriminated, should be
a good proxy for the non discriminatory wage structure. But, Theoretically, the situa-
tion if more complex since the suppression of discrimination in the labour market may
change the whole wage structure, including the wage of the favoured group. The so-
lution may lie somewhere between b̂A and b̂B . For example, using the (men) A wage
structure in equation (12), we get the following decomposition :

w̄ A − w̄B = X̄B (b̂A − b̂B )+ (X̄ A − X̄B )b̂A (13)

and discrimination is measured by :

MDC = X̄B (b̂A − b̂B ).

At the other end, we could have taken the women wage structure as a reference (B), it
would give (with b∗ = b̂B ):23

MDC = X̄ A(b̂A − b̂B ).

23The reader should notice that the occupations are often gendered, so that women wages may reflect the
non discriminatory wage structures in the predominantly female occupations.
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the same coefficient difference is used, but they are now weighted according to women
characteristics. There are obviously many ways to set b∗ and the index number prob-
lem can be interpreted as finding a sensible way of fixing b∗. The solutions adopted in
the literature are surveyed in Oaxaca and Ransom (1994).

Weighting. A first way to fix the problem is to weight the two estimators. Reimers
(1983) uses the median value, by taking b∗ = 1

2 (b̂A + b̂B ), we get:

MDC = X̄ A + X̄B

2
(b̂A − b̂B )

so that the average of the mean characteristics in two groups in now used as a bench-
mark. This clearly leads to the idea of weighting the means according to the size of the
populations A and B , so as to get the sample mean of all workers as the benchmark.
This was proposed in Cotton (1988). Let πA be the share of A workers in the sample
(and πB = 1−πA the share of B workers), we let b∗ =πA b̂A +πB b̂B , so that:

MDC = X̃ (b̂A − b̂B ) (14)

with

X̃ = (1−πA)X̄ A +πA X̄B , 0 < f A < 1.

Here the reader should notice that the weights are inverted: the weight πA is used to
weight the group B average. This is consistent with (13).

What weight should we use? Neumark (1988) proposes an elegant solution using
the approach of Becker (1971). Let us assume that the employers maximise their util-
ity. It depends on the profits, but not only. The composition of the labour force also
matters for them. Let the utility function be:

U (Π(L A ,LB ),L A ,LB ) withΠ(L A ,LB ) = p f (L A +LB )−w AL A −wB LB

where p is the output price and f the production function. Notice that the sum of
labour inputs only matters for production. This means that the two labour types have
an identical productivity and should be considered as equivalent as far as production
is concerned. Suppose that the employer likes group A and not group B , we would
typically have ∂U /∂L A ≥ 0 and ∂U /∂LB ≤ 0. Utility maximisation implies that:

∂U

∂Π

(
p f ′(L)−w j

)+ ∂U

∂L j
= 0, j = A,B (15)

which implies the standard result:

WA −WB =
(
∂U

∂Π

)−1 (
∂U

∂L A
− ∂U

∂LB

)
> 0.

The A group will be better paid than the B group when the employers have a taste
for the A group (∂U /∂L A ≥ 0) and a distaste for the B group (∂U /∂LB ≤ 0). We also see
that the discrimination coefficient is decreasing with the taste for profit (∂U /∂Π > 0).
These equations can also be used to determine the non discriminatory wage, provided
that we accept an additional assumption.
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The identifying assumption is simply that the employer should value the propor-
tion of A workers, not their absolute number. This does not seem unreasonable. Tech-
nically, this means that the utility function is homogeneous of degree 0 in (L A ,LB ).24

Under this assumptions, we can apply the Euler theorem:25

L A
∂U

∂L A
+LB

∂U

∂LB
= 0.

Using this expression with (15) gives:

W ∗ = L A

L A +LB
×WA + LB

L A +LB
×WB

where W ∗ = p f ′(L) is the nominal productivity, which defines the non discriminatory
nominal wage. In order to apply the standard methodology, we need ln(W ∗) rather
than W ∗. One can use the following shortcut.26 First, notice that:

W ∗ =WB

(
1+πA

WA −WB

WB

)
with πA = L A/(L A +LB ) the share of group A workers. Taking the logarithm, we get:27

lnW ∗ ' lnWB +πA
WA −WB

WB

next, using (WA −WB )/WB ' lnWA − lnWB , we obtain:

lnW ∗ 'πA lnWA + (1−πA) lnWB

⇔ w∗ 'πA w A + (1−πA)wB

Inserting the wage equations in this expression, we get (14). Here, the reader should
notice that one can use either the number of workers or the number of hours worked,
the latter being better in a production function. In the case when there is more than
one labour qualification, Neumark (1988) also proposes to estimate w∗ as the pooled
OLS estimator, also proposed in Oaxaca and Ransom (1988). Stacking the wage regres-
sions of groups A and B , we get the following model:(

w A

wB

)
=

(
X A

XB

)
b +u

or w = X b +u. Applying OLS, we get:28

b̂ =ΩA b̂A + (Id−ΩA)b̂B

withΩA = (X ′X )−1X ′
A X A . Notice that this estimator generally differs from Cotton (1988),

since the weighting is based on the second order sample moments of the explanative
variables rather than on first order sample moments.

24A function U (L A ,LB ) is homogeneous of degree k if U (mL A ,mLB ) = mkU (L A ,LB ). With k = 0, we get
U (mL A ,mLB ) =U (L A ,LB ). Letting m = 1/(L A +LB ) and πA = L A /(L A +LB ), we get U (L A ,LB ) =U (πA ,1−
πA ), so that the utility depends on the proportions of A workers only.

25If U (L A ,LB ) is homogeneous of degree k: ŁA∂U /∂L A +LB∂U /∂B = kU (L A ,LB ).
26For a discussion, see Neumark (1988).
27We use the approximation ln(1+ x) ' x for x ' 0. In the applications, 0 < πA < 1 and (WA −WB )/WB is

relatively low so that the approximation is good.
28Here, we assume that A and B workers do not work in the same firms, so that X ′

A XB = 0.
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2.4 Accounting for labour market participation

Wage correction. The previous estimators are applied on the observed wage data.
The problem is that these estimates may suffer from a selection bias. This point has
been studied in Duncan and Leigh (1980) and Reimers (1983). With this approach, the
wage difference is simply corrected for the selection biases (one in each wage equa-
tion), according to the Heckman method. Considering the group j = A,B , we estimate
the Probit parts of the two wage equations:29

d∗
j i = H j iγ j + v j i , d j i =

{
1 if d∗

j i > 0

0 otherwise

and get the coefficients γ̂ j . This enables us to compute the inverses of the Mills ratios,

λ̂ j i with :

λ̂ j i =
ϕ(H j i γ̂ j )

Φ(H j i γ̂ j )

Then, we run the second stage regressions on the observed wages only (d j i = 1):

w j i = X j i b j +θ jλ j i +u j i .

Replacing λ j i with λ̂ j i and denoting the mean value as ¯̂λ j = I−1
j

∑
i∈I j

λ̂ j i , we get

the regression coefficients (b̂ j , θ̂ j ) and compute the corrected wages’ difference as:

w̄ A − θ̂A
¯̂λA −

(
w̄B − θ̂B

¯̂λB

)
= w̄ A − w̄B −

(
θ̂A

¯̂λA − θ̂B
¯̂λB

)
this difference is then decomposed according to the previous methods. However, the
reader should notice that this quantity is not equal to the average wage difference so
that the next approach may be preferred.

Extended decompositions. In fact, the selection term themselves could be given a
discrimination interpretation since they are a part of the average wage decomposi-
tion (Neuman and Oaxaca, 2004). We just present one decomposition, which uses the
group A wage structure as a reference. An important point to notice is that the θ j co-
efficients are considered as not reflecting discrimination and can, therefore, be kept
different in the two groups when defining the non discriminatory wages. Let use de-
fine the function equal to the inverse Mills’ ratio:

λ(x) = ϕ(x)

Φ(x)
,

The average observed wages should be:

w̄ j = X̄ j b̂ j + θ̂ jλ(H j i γ̂ j )

where the bar denotes the sample mean, and the non discriminatory estimated wages
are obtained using b∗

j = b̂A and γ∗j = γ̂A :

w̄∗
j = X̄ j b̂A + θ̂ jλ(H j i γ̂A).

29It is also possible to estimate the from the Probit parts of Tobit 2 models.

33



Using the definition of the MDC, we get:

MDC = w̄ A − w̄B − (
w̄∗

A − w̄∗
B

)
= X̄B (b̂A − b̂B )+ θ̂B

(
λ(HBi γ̂A)−λ(HBi γ̂B )

)
Discrimination has now two components: the classic difference of returns on the en-
dowments, and the differences in average wages coming from the difference in par-
ticipation, assumed to originate in discrimination. Two other components intervene
in the wage decomposition: the endowments differences and the selection difference
caused by the difference in the θ j ’s. The decomposition can be rewritten:

w̄ A − w̄B = MDC+ w̄∗
A − w̄∗

B

so that we just need to decompose:

w̄∗
A − w̄∗

B = (X̄ A − X̄B )b̂A + θ̂A

(
λ(HAi γ̂A)−λ(HBi γ̂A)

)
︸ ︷︷ ︸

endowments

+

(θ̂A − θ̂B )λ(HBi γ̂A)︸ ︷︷ ︸
selection

We get a decomposition in three parts, where the Heckman correction has been al-
located to discrimination, endowments’ differences and selection’s difference. It relies
on the assumption that the group A has the non discriminatory participation and wage
structure, and that the θ j terms do not reflect discrimination. One can easily change
the reference wage structure if needed. The issue is different for the θ j terms since it
implies to choose a definition of what is discriminatory.

Neuman and Oaxaca (2004) develops this analysis, by considering the cases where
the selection term includes some discriminatory components itself. Indeed, θ j =σ j ×
ρ j , so that differences in wage variances or in correlation coefficients could be inter-
preted as discriminatory. With a maximum likelihood estimation of the Tobit 2 model,
it is possible to have separate estimates of (b j ,σ j ,ρ j ) and to use them to propose new
decompositions. But this relies on sometimes strong assumption about what is dis-
criminatory. 30

2.5 The productivity approach

The previous approaches rely on the assumptions that the workers have the same pro-
ductivity. Therefore, one can improve on the evaluations by including independent
measures of productivity in the analysis. It is the contribution of Hellerstein et al.
(1999). In this approach, the authors estimate a production function which depend on
the workers’ demographic characteristics (gender, race etc.) and compare their wages
with their productivity.31 The method requires additional data: one needs plant (or
firm) level data in order to estimate a production function, along with the standard
wage data. Consider first the production function. The output Y is a function of cap-
ital C , materials M and a labour aggregate L̃, which summarizes the effect of all the

30With the two-step method, one first get an estimate of the product σ jρ j , and another step is needed
to get an estimate of σ j from the residual variance. Using a Tobit 2 software is more convenient than the
two-step approach in this case.

31In the case where the access to specific jobs is discriminatory, productivity differences may come from
discrimination itself. Therefore, the method measures wage discrimination in a narrow sense.

34



labour types on production:

Y = f (C , M , L̃).

In the previous approach, all the labour types were considered as equivalent, so that L̃
was the sum of labour hours. Here, we accept that the labour productivity may differ.
Let L j be the labour input of group j ∈ J, L =∑

j L j be the total labour input, π j = L j /L
the share of the labour input of group j and φ j be the productivity of group j , the
labour aggregate is:

L̃ = ∑
j∈J
φ j L j = L

∑
j∈J
φ jπ j .

Restricting ourselves to two groups of workers, j ∈ {A,B}, we get:

L̃ = L
(
φAπA +φBπB

)
using πA = 1−πB and using the group A productivity as the benchmark, φA = 1, with-
out loss of generality, we get the following expression:

L̃ = L
(
1+ (φB −1)πB

)
and the production function:

Y = f
(
C , M ,L(1+ (φB −1)πB )

)
.

with which we can estimate φB the (relative) marginal productivity of group B . Heller-
stein et al. (1999) use a translog production function. In order to simplify the exposi-
tion, we will retain a Cobb-Douglas. Let:

Y = ACαMγL̃β (16)

where A is the total factor productivity. Using (16), we can write:

lnY = ln A+α lnC +γ ln M +β ln
(
L(1+ (φB −1)πB )

)
' ln A+α lnC +γ ln M +β lnL+β(φB −1)πB

and the estimation of this equation will provide a consistent estimate of φB .32 This
productivity differential estimate will be compared to a wage differential obtained in
the following way. Consider a plant-level equation. The plant are denoted k ∈ K =
{1, . . . ,K}. Let di j k be a dummy variable equal to 1 if the worker i belongs to the group
j in plant k. The individual-level wage equation is defined as:

Wi k = ∑
j∈J

di j kW j ,

summing this equation for all the Nk workers in the plant k gives:

Nk∑
i=1

Wi k =
Nk∑
i=1

∑
j∈J

di j kW j

= ∑
j∈J

W j

Nk∑
i=1

di j k

= ∑
j∈J

W j L j k

32The use of the delta method is necessary to get a separate estimate of φB .
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where L j k = ∑Nk
i=1 di j k is the number of group j workers in plant k. This equation is

definitional: it says that the total wage bill in plant k is the sum of the wages bills in the
J groups of workers. Considering two groups j ∈ {A,B}, the total wage bill in plant k is:

Wk =WAL Ak +WB LBk

and the average wage in plant k is obtained by dividing by Lk , the total number of
workers in plant k :

Wk

Lk
=WAπAk +WBπBk

where π j k = L j k /Lk . Denoting µB =WB /WA the wage ratio, we get:

Wk

Lk
=WAπAk +WBπBk

=WA
(
1+ (µB −1)φBk

)
taking logarithms:

wk = w A + ln
(
1+ (µB −1)φBk

)
' w A + (µB −1)φBk

with wk = ln(Wk /Lk ). Since the productivity and wage equations are defined at the
plant level, they can be estimated together on consistent employer-employee data. A
comparison of φ j and µ j may provide some evidence of discrimination. Clearly, if
φ j > µ j there is wage discrimination, while the reverse case may indicate nepotism in
favour of the group j workers.
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Law) CRED, University of Paris II Panthéon-Assas 

 Le Laboratoire d’Economie et de Management Nantes-Atlantique (Laboratory of 

Economics and Management of Nantes-Atlantique) LEMNA, University of Nantes 

 Le Laboratoire interdisciplinaire d’étude du politique Hannah Arendt – Paris Est, 

LIPHA-PE 

 Le Centre d’Economie et de Management de l’Océan Indien, CEMOI, University 

of La Réunion 




TEPP brings together 230 teacher-researchers and 100 doctoral students. It is both one of the 

main academic operators in the evaluation of public policies in France, and the largest 

multidisciplinary federation of research on work and employment. It responds to the demand for 

impact assessment of social programs using advanced technologies combining theoretical and 

econometric modeling, qualitative research techniques and controlled experiences. 

 

 

 

www.tepp.eu 

http://www.tepp.eu/

